Regularized gradient-projection methods for equilibrium and constrained convex minimization problems

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regularized gradient-projection methods for finding the minimum-norm solution of the constrained convex minimization problem

Let H be a real Hilbert space and C be a nonempty closed convex subset of H. Assume that g is a real-valued convex function and the gradient ∇g is [Formula: see text]-ism with [Formula: see text]. Let [Formula: see text], [Formula: see text]. We prove that the sequence [Formula: see text] generated by the iterative algorithm [Formula: see text], [Formula: see text] converges strongly to [Formul...

متن کامل

Strong convergence of modified gradient-projection algorithm for constrained convex minimization problems

In this article, a modified gradient-projection algorithm (GPA) is introduced, which combines Xu’s idea of an alternative averaged mapping approach to the GPA and the general iterative method for nonexpansive mappings in Hilbert space introduced by Marino and Xu. Under suitable conditions, it is proved that the strong convergence of the sequences generated by implicit and explicit schemes to a ...

متن کامل

Regularized Newton Methods for Convex Minimization Problems with Singular Solutions

This paper studies convergence properties of regularized Newton methods for minimizing a convex function whose Hessian matrix may be singular everywhere. We show that if the objective function is LC2, then the methods possess local quadratic convergence under a local error bound condition without the requirement of isolated nonsingular solutions. By using a backtracking line search, we globaliz...

متن کامل

Selection Strategies in Projection Methods for Convex Minimization Problems

We propose new projection method for nonsmooth convex minimization problems. We present some method of subgradient selection, which is based on the so called residual selection model and is a generalization of the so called obtuse cone model. We also present numerical results for some test problems and compare these results with some other convex nonsmooth minimization methods. The numerical re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Inequalities and Applications

سال: 2013

ISSN: 1029-242X

DOI: 10.1186/1029-242x-2013-243